WIEASOKEWIEN ISAND WEIKOLOGI					
Course	19ME3701	Year	IV	Semester	Ι
Code					
Course	Professional	Branch	ME	Course Type	Theory
Category:	Core				Theory
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil
Continuous	30	Semester	70	Total Marks:	100
Evaluation:		End			
		Evaluation:			

MEASUREMENTSAND METROLOGY

Cours	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	CO1 Explain the basic principles of Measurements and Metrology. L2				
CO2	Illustrate the construction and working of instruments used for linear and	L2			
	angular measurement.				
CO3	CO3 Discuss the methods/ devices used for the measurement of gear and L2				
	screw thread parameters.				
CO4	CO4 Estimate the surface roughness and flatness of machined surfaces. L2				
CO5	CO5Summarize the working principles of field quantities measurement.L2				

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1					1			1	3	1
CO2	3	2	1	1					1			1	3	1
CO3	3	2	1	1					1			1	3	1
CO4	3	2	1	2					1			1	3	1
CO5	3	2	1	2					1			1	3	1

Course Content			
UNIT-1	Concept of Measurement: Generalized measurement system and its functional elements, classification of instruments. Basic standards, primary, secondary and working standards. Instrument characteristics (static and dynamic), errors in measurement, calibration. Limits, Fits and Tolerances : Terminology of limits, fits and tolerances. Hole basis and shaft basis system, interchangeability and selective assembly.	CO s	
UNIT-2	 Linear and Angular Measurement: Vernier instruments, Micrometers, Slip gauges, Dial indicators, Tool maker's microscope, Profile projector. Bevel protractor, Sine bar, Spirit level, angle dekkor and use of rollers and spheres to determine taper. Limit gauges and Tylor's principle of gauge design. Comparators: Mechanical-Johansson Mikrokator, sigma and reed type, Pneumatic-Solex and differential type, Electrical- visual gauging and multi gauging. 	CO2	

UNIT-3	Screw thread Metrology: Screw thread terminology, errors in threads,						
	measurement of pitch, thread angle, major diameter, minor diameter						
	and effective diameter (two wire and three wire methods).	CO3					
	Gear Metrology: Gear terminology, Gear measurement: runout,	005					
	backlash, profile error, tooth thickness (chordal thickness, constant						
	chord and base tangent methods) and Parkinson gear tester.						
UNIT-4	Surface Texture: Orders of geometric irregularities, difference						
	between surface roughness and surface waviness, Numerical						
	assessment of surface finish - CLA, RMS and ten point height method.						
	Measurement of surface finish- Profilometer, Tomlinson surface meter,						
	Taylor Hobson Talysurf.						
	Flat surface Measurement: Instruments used –straight edges, surface						
	plates, Auto collimator and optical flats.						
UNIT-5	Stress and Strain Measurements: Various types of stress and strain						
	measurements- electrical strain gauge, gauge factor, usage of resistance						
	strain gauge for determining bending, compressive and tensile strains,						
	strain gauge rosettes.						
	Field Quantities Measurement: Displacement measurement:						
	Capacitive transducer, LVDT. Temperature Measurement :	CO5					
	Thermometers, bimetallic strip, thermocouple and Pyrometers.						
	Pressure Measurement : Bourdon Tube Pressure Gauge, calibration of						
	Bourdon Tube Pressure Gauge using dead weight pressure gauge						
	tester. Speed Measurement: Tachometer, Photo and Magnetic speed						
	pickup transducer, Flow Measurement using Rotameter.						

	Learning Resources				
Text	1. A Textbook of Engineering Metrology, I.C. Gupta, Dhanpat Rai				
Books:	Publications, 2018.				
	2. Mechanical Measurements, Thomas G Beckwith, Roy D. Marangoni, John H. Lienhard V., Pearson Education, 2020.				
Reference Books:	 A Textbook of Metrology, M. Mahajan, Danpath Rai & Co. (P), 2010. Metrology for Engineers, by J.F.W. Galyer, Charles Reginald Shotbolt, Cengage Learning EMEA; 5th Edition. Mechanical Measurements & control, Dr. D.S.Kumar, Metropolitan Book 				
	Co. Pvt. Ltd., 2015.				
E- Resources & other digital Material:	1. <u>https://nptel.ac.in/courses/112/104/112104250/</u>				